An Efficient Synthetic Method of Jasmone Analogues and 2,5-Dialkylpyrrolidine Alkaloids Using 1-Benzyl-2,5-dicyanopyrrolidine

Kazumasa TAKAHASHI, * Tetsuhito AIHARA, and Katsuyuki OGURA Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Yayoi-cho, Chiba 260

Reaction of 1-benzyl-2,5-dicyanopyrrolidine with alkyl halides give unsymmetrical 2,5-dialkylated products ($\underline{3}$) in high yields. Hydrolysis of $\underline{3}$ gives γ -diketones which serve as precursors for jasmone analogues having a cyclopentenone framework, while decyanation and debenzylation of $\underline{3}$ lead to 2,5-dialkylpyrrolidine alkaloids in high yields.

In our previous paper, $^{1)}$ we reported an efficient synthetic method for preparation of 1-substituted 2,5-dicyanopyrrolidines and discussed their stereochemistry. We report here a new synthetic method for preparation of natural products such as jasmones and 2,5-dialkylpyrrolidine alkaloids using 1-benzyl-2,5-dicyanopyrrolidine ($\underline{1}$). Reaction of $\underline{1}$ with various alkyl halides gave unsymmetrical 1-benzyl-2,5-dialkyl-2,5-dicyanopyrrolidines ($\underline{3}$) in high yields. When hydrolyzed in aqueous

Scheme 1. Preparation of jasmone analogues and pyrrolidine alkaroids.

Scheme 2. Stereochemistry of 2,5-dialkyl-1-benzyl-2,5-dicyanopyrrolidine using trans 1-benzyl-2,5-dicyanopyrrolidine (1b).

ethanol in the presence of cupric sulfate or nikel acetate, $\underline{3}$ gave Υ -diketones ($\underline{4}$), which are important precursors of cyclopentenone derivatives such as cis- and dihydro-jasmones, together with 1-benzyl-2,5-dialkylpyrroles ($\underline{5}$). On the other hand, when the alkylated products $\underline{3}$ were heated at 70 °C with sodium borohydride in isopropyl alcohol, decyanation took place to give 1-benzyl-2,5-dialkylpyrrolidines ($\underline{6}$). The subsequent debenzylation by catalytic hydrogenolysis proceeded smoothly to give 2,5-dialkylpyrrolidine alkaloids ($\underline{7}$), e.g., 2-ethyl-5-pentylpyrrolidine which is a component in the venom of the fire ant (Solenopsis punctaticeos). A synthetic method of unsymmetrical 2,5-dialkylpyrrolidines using vinyl ketones has been reported. However, $\underline{1}$ is an useful synthetic reagent not only for preparation of unsymmetrical Υ -diketones but also for that of unsymmetrical 2,5-dialkylpyrrolidine alkaloids. The cis-isomer of $\underline{1}$ was mainly used in the present work, but the stereochemistry of $\underline{2}$ and $\underline{3}$ obtained using the trans-isomer of $\underline{1}$ was found to be the same as that obtained using the cis-isomer (see Scheme 2).

The alkylation of cis- $\frac{1}{2}$ gave monoalkylated products ($\frac{2}{2}$) selectively. The selective formation of $\frac{2}{2}$ is important for the subsequent preparation of unsymmetrical dialkylated products ($\frac{3}{2}$). For example, the reaction of cis- $\frac{1}{2}$ with pentyl iodide in tetrahydrofuran (THF) containing lithium isopropylamide (LDA) gave 1-benzyl-2,5-dicyano-2-pentylpyrrolidine ($\frac{2}{2}$) in a 71% yield. Likewise, the reaction of cis- $\frac{1}{2}$ with hexyl bromide gave 1-benzyl-2,5-dicyano-2-hexylpyrrolidine ($\frac{2}{2}$) in a 62% yield. The physical properties of $\frac{2}{2}$ 0 obtained from trans- $\frac{1}{2}$ 1 agreed with those obtained from cis- $\frac{1}{2}$ 1. The monoalkylated products $\frac{2}{2}$ 1 isolated were found to consist of single isomers by means of column chromatography using Florisil and a mixture of benzene and hexane as a solvent. The configurations of the two cyano groups of each stereoisomer of $\frac{1}{2}$ 1 have been determined by $\frac{1}{2}$ 1 H-NMR (270 MHz): $\frac{1}{2}$ 1 The benzylic methylene protons of cis- $\frac{1}{2}$ 1 are equivalent, while those of the trans- $\frac{1}{2}$ 1 are unequivalent, giving rise to two distinguishable doublets with a coupling constant of 13 Hz. The benzylic methylene protons of $\frac{2}{2}$ 2 give two doublets with a coupling constant of 14 Hz, but the exact configuration is yet to be determined.

Dialkylated products $(\underline{3})$ were prepared in 97-99% yields by reaction of $\underline{2}$ with alkyl halides under conditions similar to those for the alkylation of $\underline{1}$, but they were also prepared by one-pot reaction from $\underline{1}$. For example, the reaction of $\underline{2a}$ and $\underline{2b}$ with ethyl iodide gave 2-pentyl- and 2-hexyl-1-benzyl-2,5-dicyano-5-ethylpyrrolidines $(\underline{3a}$ and $\underline{3c})$ in 97% and 98% yields, respectively. Likewise, the reaction of 2b with methyl iodide gave 1-benzyl-2,5-dicyano-2-hexyl-5-methylpyrrolidine $(\underline{3b})$ in

Table 1. Physical properties of new compounds

Compd.a)	Yield	Mp °C	IR, v/cm ⁻¹	¹ H-NMR(CDCl ₃ ,270 MHz), ^{b)} δ units [ppm]
<u>2a</u> :R ¹ =CH ₃ (CH ₂) ₄	71	78.2- 79.0	ν _{CN} (KBr) 2220	3.85(d,1H,J=14 Hz,PhC \underline{H}_2), 3.85(m,1H, α -C \underline{H} to CN), 4.17(d,1H,J=14 Hz,PhC \underline{H}_2)
$2b:R^1=CH_3(CH_2)_5$	80	78.0- 78.3	ν _{CN} (KBr) 2240	3.82-3.85(m,1H, α -CH to CN), 3.87(d,1H, J=13.4 Hz,PhCH ₂), 4.13(d,1H,J=13.4 Hz,PhCH ₂)
$\frac{3a:R^{1}=CH_{3}(CH_{2})_{4}}{R^{2}=C_{2}H_{5}}$	97	oil	ν _{CN} (neat) 2230	4.13(s,2H,PhC $\underline{\text{H}}_2$ of cis-form)
$\frac{3b^{C}}{R^2 = CH_3(CH_2)_5}$	99	oil	ν _{CN} (neat) 2220	1.34(s,2H, α -CH ₃ of trans), 1.37(s,1H, α -CH ₃ of cis), 3.87 and 4.14(d,0.67H,J=13.5 Hz,PhCH ₂ of trans), 4.13(s,0.67H,PhCH ₂ of cis)
$\frac{3c : R^{1} = CH_{3}(CH_{2})_{5}}{R^{2} = C_{2}H_{5}}$	98	oil	ν _{CN} (neat) 2220	4.13(s,2H,PhC $\underline{\text{H}}_2$ of cis)
$\frac{4a:R^{1}=CH_{3}(CH_{2})_{4}}{R^{2}=C_{2}H_{5}}$	47 ^d)	31.5	ν _{CO} (KBr) 1700	2.67(s,4H,-OC-C <u>H</u> ₂ -C <u>H</u> ₂ -CO-)
$\frac{5b:R^1=CH_3(CH_2)}{R^2=CH_3}$	47 ^{e)}	oil	ν _{=CH} (neat) 3050	2.02(s,3H, α -CH ₃), 4.89(s,2H,PhCH ₂),5.5 -5.9(m,2H, β -CH × 2)
$\frac{6a^{C}!R^{1}=CH_{3}(CH_{2})_{4}}{R^{2}=C_{2}H_{5}}$	86	oil	ν _{CH} (neat) 2924	3.69 and 3.81(d,0.33H,J=13 Hz,PhC \underline{H}_2 of trans), 3.77(s,1H,PhC \underline{H}_2 of cis)

a) All new compounds gave satisfactory elemental analysis (C±0.21, H±0.18, N±0.34). b) Only data of characteristic protons are listed. c) These compound of 3b and 6a are obtained as a mixture of cis- and trans-isomers. d) obtained by hydrolysis using Cu²+. e) obtained by hydrolysis using Ni²+.

a 99% yield. Both of $\underline{3a}$ and $\underline{3c}$, obtained as single isomers, are found to be cisform, as a result of stabilizing anomeric effects, 4) because their benzylic methylene protons give rise to a singlet at δ 4.13 ppm. On the other hand, $\underline{3b}$ was obtained as a mixture of cis- and trans-isomers in a molar ratio of 1 : 2 (see Table 1).

When the dialkylated product $\underline{3a}$ was heated at 70 °C for 2 h with sodium borohydride in isopropyl alcohol, decyanation⁵⁾ took place to give a mixture of cisand trans-isomers of 1-benzyl-2-ethyl-5-pentylpyrrolidine ($\underline{6a}$) in a combined yield of 83%. The molar ratio of cis to trans was 2: 1. The subsequent debenzylation of $\underline{6}$ was carried out by modification of the procedure reported in the literature. For examples, $\underline{6a}$ was hydrogenated at room temperature for 4 h in a mixture of 15% hydrochloric acid and ethyl alcohol (1:10 v/v) in the presence of 5% palladium-carbon and hydrogen at an initial pressure of 50 atm; 2-ethyl-5-pentylpyrrolidine ($\underline{7a}$) was obtained as a mixture of cis- and trans-isomers in a combined yield of 88%.

When dialkylated products $\underline{3}$ were heated at 70 °C in an aqueous solution of cupric sulfate or nickel acetate containing ethanol as a cosolvent, γ -diketones 4

2362 Chemistry Letters, 1987

were obtained. Cupric ions presumably remove cyanide from $\underline{3}$, giving insoluble [Cu (CN) $_4$] $^{-3}$ salts, 7) and the subsequent hydrolysis takes place to give $\underline{4}$. For example, the hydrolysis of $\underline{3a}$ in the presence of cupric sulfate gave 3,6-undecanedione ($\underline{4a}$) in a 47% yield. The formation of 1-benzyl-2-ethyl-5-pentylpyrrole ($\underline{5a}$) together with that of $\underline{4a}$ was confirmed by 1 H-NMR. Product $\underline{5a}$, however, was not isolated. On the other hand, the hydrolysis of $\underline{3b}$ in the presence of cupric sulfate or nickel acetate afforded 2,5-undecanedione ($\underline{4b}$) and 1-benzyl-2-methyl-5-hexylpyrrole ($\underline{5b}$) in 20-25% and 47% yields, respectively. The formation of pyrroles $\underline{5}$ is due to elimination of $\underline{6}$ -hydrogen of an iminium intermediate. The formation of dihydrojasmone using $\underline{4b}$ has been established via an intramolecular condensation of $\underline{4b}$ prepared by a different synthetic method. 8)

The present method was thus found to be useful for preparation of unsymmetrical 2,5-dialkylpyrrolidine alkaloids ($\underline{7}$) and unsymmetrical γ -diketones ($\underline{4}$) which are precursors of jasmone analogues.

References

- 1) K. Takahashi, H. Saitoh, K. Ogura, and H. Iida, Heterocycles, 24, 2905 (1986).
- 2) T. H. Jones, J. B. Franko, M. S. Blum, and H. M. Fales, Tetrahedron Lett., <u>21</u>, 789 (1980).
- 3) T. H. Jones, M. S. Blum, and H. M. Fales, Tetrahedron Lett., 20, 1031 (1979).
- 4) P. Deslogchamps, "Stereoelectronic Effects in Organic Chemistry," Pergaman Press (1983).
- 5) M. Bonin, J. R. Romero, D. S. Grierson, and H.-P. Husson, Tetrahedron Lett., 23, 3369 (1982).
- 6) M. Konda, T. Shioiri, and S. Yamada, Chem. Pharm. Bull., 23, 1063 (1975).
- 7) G. Büchi and H. Wüest, J. Am. Chem. Soc., 96, 7573 (1974).
- 8) F. Ogura, T. Otsubo, T. Sakamoto, and H. Yamaguchi, Bull. Chem. Soc. Jpn., 57, 1691 (1984). Melting point of 4b was 30-31 °C (lit. bp 99-101 °C/1 Torr), but other physical properties of 4b agreed with those reported by Ogura et al. (Received September 16, 1987)